АРХИТЕКТУРЫ И АЛГОРИТМЫ ФУНКЦИОНИРОВАНИЯ НЕЙРОННЫХ СЕТЕЙ ХЕММИНГА И ХЕББА, СПОСОБНЫХ ДООБУЧАТЬСЯ И РАСПОЗНАВАТЬ НОВУЮ ИНФОРМАЦИЮ
Анотація
Решена задача дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Объектом исследования являются процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей. Предметом исследования являются архитектуры и алгоритмы функционирования искусственных нейронных сетей. Цель работы: разработка стабильно-пластичных нейронных сетей Хемминга и Хебба. Разработаны архитектуры и алгоритмы функционирования дискретных стабильно-пластичных нейронных сетей Хемминга и Хебба, которые не только могут дообучаться в процессе функционирования, но и распознавать новую информацию. Новые сети могут стать альтернативой дискретным нейронным сетям адаптивной резонансной теории. Разработанный подход по дообучению может быть обобщен и на другие нейронные сети. Проведены экспериментальные исследования разработанных алгоритмов функционирования искусственных нейронных сетей. Результаты экспериментов подтверждают правильность предложенного подхода.
Ключові слова
распознавание и классификация образов, стабильно-пластичные нейронные сети, нейронная сеть Хемминга, нейронная сеть Хебба, адаптивная резонансная теория.
Повний текст:
PDFАдреса редакції журналу:
Редакція журналу «РІУ», Запорізький національний технічний університет,
вул. Жуковського, 64, м. Запоріжжя, 69063, Україна.
Телефон: 0 (61) 769-82-96 – редакційно-видавничий відділ
E-mail: rvv@zntu.edu.ua
При повному або частковому використаннi матерiалiв посилання на журнал є обов’язковим.